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STABILITY OF A SET OF PROCESSES WITH AFTEREFFECT

T. K. SIRAZETDINOV

Axiomatic description of processes with aftereffect is introduced for systems with
distributed parameters. Concepts of stability of a set or pipe of processes with
aftereffect are defined, and the necessary and sufficient conditions of stability
and instability, which are developments of results in /1~ 3/, are obtained.

In the application of the method of Liapunov functions to the analysis of stability of
solutions of differential equations not all properties of solutions are used. Hence it is of
interest to separate only those general properties of motions or solutions of differential
equations that are used in proving theorems, in constructing abstract axiomatic processes,
and obtaining stability conditions for the latter.

The problem of investigation of stability or other properties of motion reduces to the
test of existence of Liapunov functions that satisfy the conditions of respective theorems
and of the fulfillment of & given system of axioms which include the fundamental properties
of solutions of the Cauchy problem of a wide class of differential equations and many other
processes.

The axiomatic description of processes was also considered in /4-—6/ and other works.

1. Let (s T) be an interval of the real axis where a, <0 and T >0, Let us consid-
er the set @, of elements @,. If to every specific time ! in the interval (. 4] (g, T)
corresponds in ®, a particular element @ = @ (fy, 4,;¢), we shall assume that the initial curve
Qo = @ (o, £;i ) is specified in the interval (z,, t,]. It is significant that ¢, depends not
only on ¢ but, also, on the interval (i, !]. For instance, when @, is a set of numbers, ¢,
assumes numerical values and the curve defined by formula ¢ = #*(t, —{,) depends on the selec-
tion of the interval (t,,f). For each pair of df, % there exists in this case a specific
dependence of ¢, on time {. Function = ¢ which is independent of the inteirval (f, t,}
is also a curve in the considered here sense.

From the multiplicity of initial curves we separate the class of curves called initial
processes.

Axioms of initial processes. 1.1. Any initial process determinate in the interval
(te» ] C (2, T) is the initial process in any interval (t', #,'] C (2o, 2,).

1.2, If two initial processes @, (fy, ;%) and @ (f), Ly, &), where o, <t <L <t 7T,
are specified, then the composite initial process g, ({t,, %, f), consisting at & (4, t,] of
elements of the first,and at (& (t, 2,1 of those of the second initial process, is also an
initial process.

1.3. At least one initial process determinate throughout the interval (2y, T) exists.

We shall call P = @, the initial state and the three above axioms, respectively,
the contraction, articulation, and existence axioms.

Axioms 1.1 and 1.3 imply that an initial process exists in any interval (fy, 1] C (2o Ty,
According to axiom 1.2 we obtain the initial process by combining initial processes of adjoin~
ing time intervals.,

2, Let ® be a set of elements ¢ . If to each time interval (& lt,, ) C (0, T) and init-
ial process @ = @o (% 207 1) determimate in the interval (a,t)) C (ao, 2] and ¢ & (a,t,], a
specific point @ = @ (@ (@, to; t'), L, },; f) corresponds in @, a curve with aftereffect is specif-
ied in the set ® . Thus a curve with aftereffect satisfies the initial condition, i.e. the
axiom of initial data.

Here the element ¢ & @ depends at the instant of time ¢ on the initial process ¢, =

@o (&, %; ") specified in the interval (ay t) C (g, 7] and on the interval [t,, t,). The initial
process @, = @ (@, f); t') is also called the initial condition.

If 2 curve with aftereffect begins to develop in the interval [, t,) C (2, T), at instant
of time ty, its determination requires the knowledge of the initial process or the initial
condition in the interval (a,, ?,J. If, however, a curve with aftereffect is considered in the
interval [z, ) C (2o, T), where ¢, <<t,’, it is necessary to know the initial state curve in the
interval (a', £’} C (@, %'
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By gpecifying various initial processes in the intexval {a’, f,’], we generally cbtain differ—
ent curves with aftereffect in the interval {4, &), If, however, the initial process g,{z’,
;& coincides with some curve § with aftereffect in the interval i, £'YC {u; T), where
2, << !,’, the curve that has such initial process in the interval (&', %) is considered as the
continuation of curve ¢’ with aftereffect in the interval [z, ).
From among all possible curves with aftereffect we separate a ¢lass of processes with
aftereffect,

Axioms of processes with aftereffect. 2.1. any process with aftereffect deter-
minate in the interval &, %)@, 7)) is also a process with aftereffect when considered in
any interval [f 23T [te %), i.e. when @{gs{a.2yt'), 4, 4 £} is a process with aftereffect,
@ (e’ (@, 443 ), &, /5 1) is also aprocess with aftereffect with initial condition

toesla, ), o’ (&) 2 ') = @ (a, tg; '), t =ty ty')y 90 (@ t; ) = @ (P (2 ) Yy by i )
2.2. If two processes
@ (s (cter o3 ') I B3 8h @ (@ (O B3 87N &y 203 )
with aftersaffect determinate, respectively, in the intervals [3, ) and I, ) are such that

L (o, toly @ Ky Ctpy Bo (@o L1 ) = Qo (R fo3 2, L €5 [tor ]y o (2ay B3 £) = @ (o {2y los ')y Tos 25 D)

the composite curve consisting at t«#, of elements of one process with aftereffect and at
t >t of slements of anuther process ig also a prodess with afterefféct. Such processeswith
aftereffect will be called composite.

2.3. There exists at least one process with aftereffect determinate throughout the in-
terval {fy, T} with initial curve determinate in the interval {(m, &l

A procvess with aftereffect satisfies the axioms of initial data, contraction, articula-
tion, and existence in the time interval [f, T), and the initial condition in (=, #]. Below,
we also consider processes with aftereffect ¢ = @ (Pg (% foi ), §y, £;; {) not only in the inter
val [ty ) but, also, in the interval {g,f) and consider such processes to be a composite
process with aftereffsct consisting of processes

Pty =Gl it t=Upth o =9 i{pe oty P fy i3 O

We shall write for brevity o = g {pg, a, ty, &; &), where (&, %] indicates the initial distri-
bution interval, and [f), #;) the interval of the process determination. We shall also use
the term “process" for a process with aftereffect, with ¢ & @ callad the state of the process.

3. The measure p = plg, 2] of the state of a precess with aftereffect at instant of time
t =1 T) is a real number which is brought in correspondence to each pair {g, ) of any pro-
cess with aftereffect.
The yeal number that is brought in correspondence to each curve of initial processes 9o {e,
t; f), determinate in the interval (, f{] is called the measure Py = 0o l9;a, ¢] of initial
processes. For instance, p, [@; @, f,] = supee, o 0 l9, 1], where p =plyp, ¢] is the measure of the
state or processes at any arbitrary instant of time ? &R (a,1,].
1f for a given number & >0 there exists another number § = § (g >0 such that the
inequality p<C8& is satisfied for py<l 8 () and every (& {(a, ], measure f is callasd upper
semicontinuous with respect to measure Ps. It is assumed below that measure ¢ is upper semi-
continuous with respect 0 . The measures P and p, may assume both, positive and negat-
ive numerical values, while the numbers ¢ and 3§ (g) ¢an only be positive.

4., Tt is assumed that there exists at least one process with aftereffect «@y = Py (Pou (o
to; )ity T3 t). which satisfies the inequalities o K0 and px O
The set
o=t t:p<0 =@ L p<O t=slte, TH

of processes with aftereffect will be called the set or pipe of unperturbed processes - with
aftereffect.

Let r be a positve number. We wall the set of initial processes that satisfy the inegual«
ities 0« p,<<r the initial perturbations, and the processes issuing from that region will
be called perturbed processes with afteraffect.

The unperturbed set [y of processes with aftersffect is called stable with respect to
measures P and Pp in the interval [ F), if for any positive number & it is possible to in-
dicate a positive number 3 = § (g} such that for any perturbed process with aftereffect ¥ <

@ {@oy & 1y, T3 t) which in the initial interval of tima (% %] satisfies the ineguality po <<
8 (e) throughout the region of process determination, the condition p<<e, Vi [t 7) is sate
jsfied. If the stability condition is not satisfied, the set I, is called unstable.
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When T ==oc the unperturbed set I, of processes is called asymptotically stable with
respect to the two measures p and po if it is stable with respect to these measures and
provided that the condition limj..p {0 is satisfied by any perturbed processes issuing from
the small neighborhood of p, & (0, r).

Note that aleng specific processes the functionals p and p, are assumed to be continu-~
ous functions of time 1.

5. We introduce the functional v= v[g, ¢] which at every instant of time (&[4, I)
associates to the process state ¢ the real number v and the functional ve = v [g; a,t] which
for the composite process ¢ = ¢ (@, (&, Iy "), 2, T;t’) associates in the interval [a, ) ¢ letg, T)
at instant of time i <={t, I) the real number 4, For example

vig.fl={ ¢ (@ 0)dz, va=vigiafi= sup Ble,sl
< e la, ]

where @ = @ (z’, t} is a scalar function of &1 and & {ey, T, and T is an interval of the
real axis.

It is assumed that in unperturbed processes v =v[g, 1] 0 and vy = vlig;a, ] 0 when

o Ot =1y, p<LO, telty, T), and vy, t} == 0 when p g, t] = 0.

The functional v = v {yp, t] is called uniformly upper semi-continuous with respect to meas-
ure ps in the interval (&, 1,] if for any number €>0 can be found a number §=28(e) >0
dependent only on & and such that the estimate v e is satisfied for p,<{6() and all
t < {a, t,y).

The functional Vs = v lg; «, t] is called upper semi-continuous with respect to measure
Po = Po lp;a,. 8] at t = t, if for any arbitrarily small number &> 0 can be found a positive
number § = § {¢) such that the estimate ¥z <& is satisfied under condition that po < 6 (e), ¢
=1t, If this estimate is satisfied for all t& [#,, T), the functional p, is called uniformly
upper semi-continuous with respect to p; in the interval [t, 7).

The limit of the ratio

lim v[(p,+A,;a(z+At),z+At}-—v[q>,:u(t),t)“ v
Pt At = Td@t

is called the derivative of functional v, along the process, where @; = @ (@, a.t,, T; 8).

The functional v =vlg, t] is called positive (negative) definite with respect to p =
ple,t] 1f vip.1>0(wle, t]<<0) when p> 0, and vig,tl=0 when p=0.1&1t, T} and if
for any >0 there exists another number &8 =& (2) >0 such that the inequality vlg, ¢} >
8 () (vlg, t] < — 8 (¢)) is satisfied for plg,t1>¢ and all ey, 7).

The functionals
11

S S(p’(z, t)ydzdt
A

where ® >62>{(2)2> ¢, >0 and y=const >0 are positive Gefinite with respect to measure

1 13
v= {109 @ 0ds, ©>a>i@>a>0, ve={i@¢@nd+
4] 13

t=y

i
p..-«-_-Szp’ (z,t)dx

Indeed, the estimates UZ»ep,Va2>¢p, ¢ >0 show that when p>&>0 at t =it —y, 1),
there exists a number 5 (g) =ce >0 such that v >8(e) and v, > 8{e). On the other hand, if
p = 0. then ¢*(z, 1) = 0, except the set of measure zero, and consequently p =10 and u = 0.
In this case, the processes that satisfy the equality ¢ = 0 correspond to an unpertubed pro-
cess.

In what follows v =vlg, th va =vg; e, 2], p=plg,2l, Po = p,[0; u, ] and their derivativ-
es along processes are assumed to be continuous functions of time ¢ in the considered inter-
val.

Note that the functional v =vlp, ¢l is to be considered as a particular case of function-
als of the form 1z =vlg;x, ] with g =7 hence it is possible to assume that vip, t]l =
(Codowm: = vig; 1, 2]

6. We present below the theorems on stability and instability.

Theorem 1. For the set I', of unperturbed processes to be stable with respect to the
two measures p and p, it is necessary and sufficient that there exists functional Vg = v lq;
a,t] that is positive definite and upper semi-continuous with respect to measures P and p,,
respectively, when ¢t (a,t,] and non-increasing along perturbed processes with aftereffect.

Theorem 2. For the unperturbed set I', to be asymptotically stable with respect to the
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two measures p and p, it is necessary and sufficient that there exists functiocnal Uz =volg;
@, t] upper semi-continuous with respect £o measure p, for ¢&={a,?,] positive definite with
respect to measure o, nonincreasing along perturbed processes, and satisfying condition
fimo, L0 a8 t—eo,

Theorem 3. For the unperturbed set [, of processes with aftereffect to be unstable
with regpect to the two measures P and p, it is necessary and sufficient that there exists
a bounded functional Vs » v[g;a,?] with positive definite derivative dv/dt in region {Qive
> 0},and that there exists for any number §, > o process g¢lp,, a, ty il  issuing from region
{p:v, >0} and satisfying the condition 0< p, < 8,

The formulation and proocf of these thecrems is similar to that of the thecrems on stabil-
ity and instability of process ¢ ( with respect to the two measures in the absence  of
aftereffeut /4,7/. But the substante of processes and theorems considered here considerably
differs from that of processes investigated in /4,7/.

7. Let us consider the theorems on stability of processes with aftereffect, using the
derivatives dpridt and which genexalize the results of /1,3/. These theorems define the suf~
ficient stability conditions.

Theorem 4. If for perturbed processes there exists functional v = vlg, t] which in the
interval (o, t,] is upper semi-continucus with respect to measure ¢, and positive definite
with respect to measure p, and whose derivative dy/dt determined at an arbitrary (& [f, 7)
along perturbed processes on set

o' o v HICrig . a (LY L T

is nonpositive for a LTI T, the unperturbed set T, of processes is unstable with
respect to measure p and P,

Proof, Functional » is positive definite with respect to measure p. Hence for a given
number &30 there exists a number us™ pol€) such that v2>pe {f PBE  and vice versa,p<é
if » <. Fupctional » , on the other hand, is upper semi-continuous with respect to measure

gs in the interval (s, 4}. Hence there exists for number Me>0 a number §iu) >0 such that
r<gs for t={a, k), when p<§p)

Morecver, the upper semi-continuity of ¢ with respect to & in the interval (=, %] im~
plies that for a given £>0 there exists a §,= &fe) >0 such that p<«<e for all & (& »] if

po < 8,(2). We denote &= b (8) = min {8;(e), 8y(&)}, A number & =258()>0 hag, thus, been found for
e>0,su0h that v<py and p<e at all t=(a, 5] if pe<8(e). By virtue of the assumed
continuity of » with respect to ¢ there exists some time interval (u,#, where :7»t, »<po,
hence p<(8&.

Let us prove that p<{g for any ¢={k. T}. Let us assume the existance of a2 process in
which the functional » is differentiable with respect to time f and of the instant of time

=1 at which p>»2 and 7> . while up to that instant »<pe and d/dt>0 at (=7 in the
smail neighborhood ({r,t - Af), At >0. The derivative 4yt at the instant of time :=<t depends
on the state of the process at ¢ < T in the set

@, ol VIS vip d=pya<d <=1

According to the condition of the theorem the condition didt<8 is satigfied everywhers
in the set of such states. Hence »<jps and p<s at any t>8 if <8 at 1=1n. The
stability of set Iy of processes with aftereffect with respect to measures and ps 1S prove~
ed.

when proving thig theorem it was assumed that I' can be finite ag well as infinite.Below,
in the investigation of agymptotic stability we set ' mocc, Note that parameter ¢ may depend
on 1y, i.e, @ =a(l), but ()< i, Duration of the interval of tha aftereffact lee (2o}, 2,1
of processes considered in the interval [t;, ) depends on the initial instant {,. The prev-
icusly proved thecrems and the theorem considersd below are also valid on these assumptions.

Let us assume that the derivative dv/di along processes with aftereffect are determined
on a set of states g of a process in some segment I[P, t1. 1In analyzing its asymptotic stabil-
ity we shall assume parameter B to be a function of time, i.e. B p () and limf (£) = oo
when t-s00, B(£) <P (<t The case of P (f) =t corresponds to the absence of argument lag.
The derivative dv/dt 4is thus, at instant ¢ a functicnal determined in the set of states ¢ on
segment [f(y), {] whose right- and left-hand ends indefinitely recede to the right from the
coordinate origin.

Theorem 5. 1If there exists for perturbed processes {9:0<(pe<(r} functiocnalv =vlg, ¢
upper semi~continuous with respect to p, in interval (@ {ty), ¢} uniformly upper semi-continue-
ous and positve definite with respect to measure p for f2>tf, whose derivative de/dt calecul-
ated for an arbitrary tezlt, co) along perturbed processes on the set.  {@, t}, which satisfy
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the inequality
vigh 1< fwlep, th, Y@, &, t >, ©>0,f0)>V) (7.1)

is negative definite with respect to measure P for f>>%, then the set T, of unperturbed
processes with aftereffect is asymptotically stable with respect to measures p and p,.

A s v

Proof. If the theorem conditions are satisfied, then the conditions of the preceding
theorem are satisfied. Hence the set I, of perturbed processes with aftereffect is stable
with respect to the two measures p and e i.e. there exists for a given number g > ¢ a number
=28 >0 such that p<e for any t>1, if p<8( at t=i. It remains to prove the
asymptotic stability of set To.

Let &£>0. We determine the number & =6() such that p<e for any 1>, if P <8
at t=1. We shall consider only such processes for which po < () at =t and, consequent-
ly, p<e for any t>w. There exists then a number po =po(e) such that

26, v< (7.2)

The functional »=vlg, #§] is positive definite with respect to measure p, i.e., there
exists for any number ne&(0,e) a number pp=pr(M)>0 such that »>pr when p>n  This
implies that when »< gy, then p< 1.

Let us ascertain that when we have »<p at t=1t the functional » attains the value
»< pr in the time interval [un,T]. To prove this we shall show that there exists a finite
time interval [#,7] in which the functional decreases by not less than the remainder m(e) —
dr (M), no matter how small pgp(n) >0.

Let us assume that o>+ and, consequently, »>pur(n) at any re [n, ), and show that this
assumption is violated in the finite interval [t, 7).

1f v>2pp(n) >0, then there exists a positive number e=gafprimi=a(m such that f0 —
»2a(n) >0

The derivative di/d: in the set of states vl¢', VI<j(le, i), =B, 1), b<t is a negative
definite functional, i.e. there exists for a given number v >0 another number &= Su(n) >0

A e Al

-l
such that under condition p 7

dvidt < — o (7.3)
P on mde dale o e e oan e e o : e ——A £ o __ 0 /an Bl e Lamm e e = Y oy pu NN POy P T
Letl at uie iasieanits 15 e I ani Lol P=P\E Wie LuicLiVlial vy, i) LDe, ILedpecLively,

equal » and ug. Condltion (7.1) postulates the fulfillment of inequality v </(w). Since

vg and @ are not know a priori and depend on the selection of functional v and of process-
es ¢, and are independent of the selection of function (v} , it may happen that at the in-
itial and some other instants within the intexval [B(t).d, »3>f(») and ¢>f(w) . This means
that at the instant of time ¢! processes may come from the set of states that are outside the
limits of the set (¢',¢, ¢, uv<f(m),B(< <), i.e. from the set of states »> (o), (<<t < ¢
The dependence of dv/d: at instant of time ¢ only on the process states that satisfy condit-
ion (7.1) is not guaranteed.

Because of this we shall consider only processes for which the functional v= vlig,1] de-
creases by less than e=7f(») —». When » decreases from 7, <io to =u<yu: within a finite
time interval, the remainder (m —p;) proves to be greater than the remainder (/(»)—v»,). When
the variable v decreases by more than the remainder f(v)—uvr=a, the estimate (7.2) is inap~-
plicable. Because of this we divide the interval [py,p] by a=q(y) and introduce the integer

N defined by the condition

N —1< (po— nplia<< N (7.4)
We shall show that there exist instants of time 4 =11 8 %),7=0, 1,...,N such that
vlp, < pp+ (N —jje (7.5)
for :1>1,/=0.1,....N, and condition rle. 1] <uris consequently satisfied for 1> T =t,.

When =0 dinequality (7.5) is satisfied. Indeed, (7.4) implies that pT+aN>po Hence,
when vlg; 1> pr+aN at t=0, then vig,iJ>p, at t>t , which contradicts inequality (7.2),
and inequality (7.5) is satisfied when ;= 0.

Let us assume that inequality (7.5) with subscripts =k is satisfied at t>4 and
prove that it is also satisfied at all j =k + 1.

It follows from the assumptions that Blg<<B(), Bt limB(n=o0 as ;=0 that for any
given number 4>f% and instant of time #*>u such that () >u for :>4* can be found,
If >, then it follows from (7.5) that »l¢',/]<pp+a (N —k. We have to ascertain that the
inequality o[¢', 1< ug-~a(W —k—1). is satisfied within a finite time interval. Let us assume

that at the instant of time :>g4* the inequality vl¢, a*l>pr+a(N—k—1) is also satisfied.
Then B (Hh>u and the process with aftereffect that effects the derivative dvid: lies inside
the polygon
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ppt e —k =) <ely, I<pp+al¥N —k, By <t (7.6)

Consequently, dv/dt<—0(m). Assuming the worst case ()y-=pr+alV—k) and integrating
dvldt << — 8o () from ;= ,* along the process with aftereffect, we obtain

vig, d< pp+a(V —k) — (& — u®) So(n)

In the time interval A« = a(n)/fo(n) the functional [ g, decreases not less than by ¢,
ice. (E—uMbM>a(n) at =y, where f,= &* -+ a(n) /8 (v).
Thus the inequality
(@t Sprp +a(V—k—1)

is satisfied for !> tp .
Its violation at some (2> ¢,, contradicts the negative definiteness of the derivative
dv/dt in region (7.6). Thus, beginning from scme instant of time = ¢,,, inequality (7.5)
with subscript j=+k-+1 1is satisfied. Applying the methodof complete induction, we find that
inequality (7.5) is satisfied for any , including /= N. Setting in (7.5) /=N we obtain

t2ty =7T. vl ) < pp
Hence the assumption that »> pp is satisfied at any :>4 is violated at finite 7 = iy.
When t>ty=7T, < pur is satisfied and, consequently s< 1.

Thus within a finite time interval P remains smaller than any arbitrarily small positive
number "M i.e. Imp<0 as ;—0. Q.E.D.

REFERENCES

1. RAZUMIKHIN B.S., On the stability of systems with lag. PMM, Vol.20, No.4, 1956.

2. KRASOVSKII N.N., Certain Problems of the Theory of Motion Stability. Moscow, Fizmatgiz,
1959, (See also Stanford Univ, Press, Stanford Cal. 1963).

3. SIRAZETDINOV T.K. and SEMENOV P.K., On the stability of processes with distributed para-
meters and lag. In: Problems of Analytical Mekhaniks, Theory of Stability of Motion and
Control. Moscow, "Nauka", 1975.

4. MOVCHAN A.A., Stability of processes with respect to two metrics. PMM, Vol.24, No.6, 1960.

5. MATROSOV V.M. and ANAPOL'SKII L.Iu., The method of matching in process analysis. In:
Problems of Analytical Mechanics, Theory of Stability of Motion and Control. Mogcow,
"Nauka”, 1975.

6. SIRAZETDINOV T.K., Stability process sets. In: Problems of Motion Stability, Analytical
Mechanics, and Motion Control. "Nauka", SO Akad. Nauk SSSR, 1979.

7. SIRAZETDINOV T.K., Stability of Systems with Distributed Parameters. Izd. Kazansk. Aviats.
Inst., 1971.

Translated by J.J.D.



